برای دریافت پروژه اینجا کلیک کنید

 پایان نامه معرفی و طبقه‌بندی فولادهای میکروآلیاژی در word دارای 193 صفحه می باشد و دارای تنظیمات و فهرست کامل در microsoft word می باشد و آماده پرینت یا چاپ است

فایل ورد پایان نامه معرفی و طبقه‌بندی فولادهای میکروآلیاژی در word  کاملا فرمت بندی و تنظیم شده در استاندارد دانشگاه  و مراکز دولتی می باشد.

این پروژه توسط مرکز مرکز پروژه های دانشجویی آماده و تنظیم شده است

توجه : توضیحات زیر بخشی از متن اصلی می باشد که بدون قالب و فرمت بندی کپی شده است

بخشی از فهرست مطالب پروژه پایان نامه معرفی و طبقه‌بندی فولادهای میکروآلیاژی در word

فصل اول مقدمه   
فصل دوم :‌مروری بر منابع   
1-2- فولادهای کم آلیاژ و دارای استحکام بالا   
1-1-2- طبقه بندی فولادهای کم آلیاژ دارای استحکام بالا   
2-1-2- اثرات افزودنی های میکروآلیاژ کننده   
3-1-2- انواع گوناگون فولادهای فریت – پرلیت میکروآلیاژ شده   
4-1-2- اثرات عناصر میکروآلیاژی روی مشخصه های به عمل آوری   
5-1-2- به عمل آوری فولادهای پتک کاری میکروآلیاژ شده   
6-1-2- کنترل خصوصیات   
7-1-2-اثرات عناصر میکروآلیاژی شده روی پتک کاری   
2-2- مهندسی محصولات آهنگری فولادهای ساختمانی میکروآلیاژی   
3-2- تبلور مجدد استاتیکی فولاد آستنیت تغییر شکل یافته و رسوب سینتیک القا شده در فولادهای میکروآلیاژی وانادیوم   
1-3-2- تبلور مجدد استاتیکی   
2-3-2- نمودارهای دما و زمان رسوب PTT   
3-3-2- مقایسه ی بین Tnr , SRCT    
4-2- ریز ساختار و ویژگی های فولاد کم آلیاژ مقاوم به دما  
1-4-2- ترکیب شیمیایی   
2-4-2-پردازش و عمل آوری ترمو مکانیکی  
3-4-2- ریز ساختار   
4-4-2- تنش تسلیم دمای فزاینده   
5-4-2- سختی ضربه ای   
6-4-2- مقاومت به دما  
5-2- فرآیند ترمو مکانیکی و ریز ساختار فولاد میکرو آلیاژی و محصولات میله ای سیمی  
1-5-2- میکروساختار و خواص آن   
2-5-2- پیشرفت های بعدی   
6-2- بهبود استحکام ضربه و خواص کششی در فولاد میکروآلیاژی آهنگری گرم وانادیوم – نیوبیوم از طریق کنترل میکروساختار   
1-6-2- خواص مکانیکی   
2-6-2- میکروساختار   
3-6-2- میکروساختار   
4-6-2- خواص مکانیکی   
فصل سوم:نتیجه گیری و پیشنهادات  
نتیجه گیری   
پیشنهادات  
مراجع   

بخشی از منابع و مراجع پروژه پایان نامه معرفی و طبقه‌بندی فولادهای میکروآلیاژی در word

1)High-Stregth low alloy steels

2)Engineering of forged products  of microalloyed constructional steels

3) static recrystallization of hot deformed austenite and induced precipitationkinetics in vanadium microalloyed steels

4)microstructures and properties of low-alloy fire resistant steel

5)thermo-mechanical processing and microstructure of microalloyed steel bar and wire road products

6)Impact toughness and tensile  properties improvement through microstructure control in hot forged Nb-V microalloyed steel

7) T.Gladman , the physical Metallurgy of Microalloyed steels , the Institute of Materials , London ,

8) J . Adamczyk , Engineering of Steel Products , Wyd . politechniki slaskiej , Gliwice , 2000 , (in polish )

9) J.Adamczyk , Enginerring of Metallic Products cz . 1 , Wyd . politechniki slaskiej , Gliwice , 2004 , ( in polish )

10) J . Adamczyk  M . Opiela , Journal of Mater . processing and Technology , v . 157 – 158 , 2004 , s

11) J .Adamczky , E . Kalinowska – Ozgowicz , W . Ozgowicz , R . Wusatowski , J ournal of Master . Processing and technology , v.53 , 1995 , s

12) M . Korchynsky , Microalloyed forging Steel , Union Carbide , GmbH ,

13) S . Engineer , B . Huchteman , proc . Symp . Fundamentals and applications of Microalloying forging steels , Colorado , TMS , 1996 , s

14) J . Adamczyk , M . opiela , A . Grajcar , 10 th Int . Conf . AMME ‘ 2001 , 2001 , s . 5 , ( in polish )

15) J. Adamczyk , M . opiela , A . Grajcar , 11th Int . Conf . AMME ‘ 2002 , 2002 , s . 7 , ( in polish )

16) A , Najafi – zadeh , S . yue and J . J . Jonas : ISIJ Int ., 32 (1992) ,

17) L .N . pussegoda and J . J . Jonas   ISIJ Int ., 31 (1991) ,

18) F . H . Samuel , S . Yue , J . J . Jonas and  B.A . zbinden : ISIJ Int ., 29 (1989) ,

19) 54) F . H . Samuel , S . Yue , J . J . Jonas and K . R . Barnes : ISIJ Int 30(1990 ),

20) S.F.Medina and V.Lopez : ISIJ Int ., 33( 1993 ) ,

21) S.F.Medina and J.E . Mancilla  : ISIJ Int ., 33( 1993 ) ,

 22) C.M . Sellars : mater . Sci . Technol . , 6( 1990 ) ,

23) C.M . Sellars : Hot Working and Forming processes , ed . by C

M . Sellars and G.J .Davies , Met . Soc ., London , (1980 ) ,

24) T. Siwecki : ISIJ Int ., 32 ( 1992 ) ,

25) E . Anelli : ISIJ Int .,32( 1992) ,

26) O.Kwon : ISIJ int ., 32 (1992) ,

27) A.Laarasoui and J.J . Jonas : ISIJ Int ., 31 (1991 ) ,

28) A.Laarasoui and J.J . Jonas :Metall . Trans . A , 22 A (1991) ,

29) S. Yamamoto , C . ouchi and T . Osuka : thermomechanical processing of Microalloyed Austenite , ed . by A . J . DeArdo , G . A. Ratz and P .J . wray , the Metall . Soc . of AIME , Pennsylvania ,

( 1981 ) ,

30) S.F.Medina , J E . Mancilla and C.A . Hernandez : J . Mater Sci ., 28 (1993 ) ,

31) H.L . Andrade , M .G . Akben and J .J .Jonas : Metall . Trans .   A ., 14 A (1983 ) ,

32) p. choquet , A . Le Bon and C . perdrix : strength of Metals and Alloys , CISMA 7 , vol . 3 , ed . by H . J . Mcqueen et al ., pergamon press Oxford , ( 1986 ) ,

33) S.F . Medina and J.E . Mancilla : Scrip . Metall . Mater ., 30  ( 1994) ,

34) S.F .Medina and A . Cores : ISIJ Int ., 33 (1993 ) ,

35) A. Faessel : Rev . Metal ., Cah . Inf . Tech ., 4( 1976) ,

36) S.F . Medina and P . Fabregue : J . Mater . Sci ., 26 (1991) ,

37) K. Narita : Trans . Iron Steel Inst . Jpn ., 15 (1975 ) ,

38) 19.B Dutta and C.M . sellars : Mater . Sci . Technol ., 3(1987) ,

39) W.J .Liu and J .J . Jonas : processing Microstructure and properties of HSLA Steels , ed . by A. J . DeArdo , the Minerals , Met . Mater . Soc ., pittsburg , P.A ., ( 1988 ) ,

40) W.p. sun , M . Militzer , D .Q .Bai and J .J .Jonas : Acta Metall ., 32 (1993) ,

41) S.F . Medina and J .E . Mancilla Acta Metall ., in press

42) American Society of testing Materials 1996 Standard test methods for fire tests of building construction and materials , Philadelphia , E

43) Argent B B , Niekenk M N and Redfern G A 1970 J . Iron & Steel Inst

44) Assefpour – Dezfully M , Hugas B A and Brownigg A 1990 Mater Sci . & Technol

45) Baird J D and Jamieson A 1972 J . Iron & steel Inst

46) Bhadeshia H K D H 1992 Bainite in steels ( London : Institute of Materials )

47) Borato F, Barbosa R , Yue S and Jonas J J 1988 proc . thermec 88           ( ed . ) I Tamura ( Tokyo : Iron and Steel Inst . Japan ) p

48) Bureau of Indian standards 1998 Indian standards Is 2062 , New Delhi

49) Bureau of Indian Standards 2002 Indian standards Is 15103 , New Delhi

50) Chijiwa R , Tamehiro H , Yoshida Y , funato K , Uemori R and Horii Y 1993 Nippon steel tech . Report

51) Dah1 W 1992 steel (Dusseldorf : Springer Verlag  and Verlag stah1 Eisen )

52) DeArdo A J 1995 Microalloying ‘ 95 ( Warrendale : Iron and Steel Society ) p

53) Fushioni M , Chikaraishi H and Keira K 1995 Nippon Steel Tech Report

54) Ho C Y , powell R W and Liley P E 1975 thermal conductivity of the elements : A comprehensive review ( New york : AIP )

55) Honeycomb R W K 1981 Steel microstructure and properties              ( London : Edward Arnold ; ohio : ASM )

56) Houdremont E 1953 Handbook of special steel (Berlin springer verlag )

57) Irvine K J 1962 J . Iron & steel Inst

58) Isachenko V P , Osipova V A and Sukomel A S 1980 Heat transfer         ( Moscow : Mir Publisher )

59) Lando1t B 1991 thermal conductivity of pure metals and alloys (eds ) O Madelun and G K white ( Berlin : springer Verlag ) 15 C

60) McGannon H E (ed.) 1966 Making , shaping and of steels                     ( pittsburgh : USS )

61) Ouchi C , Sampei T and Kozasu I 1982  Iron & Steel Inst ., Japan

62) panigrahi B K 2001 Bull . Mater . Sci

63) panigrahi B K 2002 Unpublished result

64) panigrahi B K 2004 Seminar on Structural steel for construction industry ( NIT , Rourkela : the Institution of Engineers )

65) panigrahi B K and Jain S K 2002 Bull . Mater . Sci

66) pickering F B 1978 physical metallurgy and design of steels             ( London : Applied Science pub . )

67) poliak E I and Jonas J J 2003 Iron & Steel Inst . Japan Int

68) Riemann W 1953 Stah1 und Eisen

69) sage A M 1983 proc . int . conf . steels for line pipe and pipe line fittings ( London : Metals Soc . ) p

70) Tanaka T 1981 Int . Metal . Rev

71) Tou1okian Y S and Ho C Y 1981 properties of selected ferrous alloying elements ( New York : McGraw Hill Book Co ) III

72) Wettlaufer M and kasper R 2000 Steel Res

73 ) D.T.Llewellyn , Ironmaking & steelmaking , 20 (1993)

74) J.K . Brimacombe , et al , in J .D . Boyd ( eds ) , Steel product – process Integration , proc . Intl . Symp ., 1989 , can . Inst Min & Met

75) I . Tamura , et al , Thermomechanical processing of HSLA Steels , 1988 , Butterworths

76) J.R.Paules , J . Metals , 43 (1991 , 1 )

77) M.Fukuda , T . Hashimato and K . Kunishiga , Microalloy 75 conf . proc ., union Carbide Corp ., New york , 1977 , p

78) J.R . paules , et al , 31 st Mech . Working & Steel processing proc ., 17( 1989)

79) T.Ohshiro , et al , in G.E. Ruddle and A.F .Crawley (eds ) , Accelerated Cooling of Rolled Steel , pergamon , 1987 , p

80) M.F.Mekkawy , et al , Mater . Sci . & tech ., 7 ( 1991 )

81) M.F.Mekkawy , et al , Iron & Steelmaker , 17 (1990 , 10 )

82) G.thomas , in M .A . Meyers & O.T .Intal (eds) , Frontier in Material Techniques , Elsevier Science publishers , 1985 , p

83) T.Yutori , et al , in G . Kraus and S.K . Banerji (eds) , Fund . of Microall . forging Steels , TMS –AIME , 1987 , p

84) A.M . sage , in G . Kraus and S.K . Banerii (eds) .ibid , p

85) F.A. .khalid and D.V . Edmonds , Mater . Sci & Tech ., 9 ( 1993)

86) K . Hulka , 8 th process Technol . Conf . proc ., ISS – AIME , 1988 , p

87) D.V .Edmonds , Iron & Steelmaker , 17 (1990,1 )

88) C.I . Garcia , et al , in A. J . DeArdo ( eds) , proc , Intl . Conf . on proc ., Micros  . & prop . of Microall . & HSLA Steels , ISS –AIME , 1992 , p

89) K. Hulka & F . Heisterkamp , as in Ref 12 p

90) J.C. Herman , ISIJ Intl 32 (1992)

91) J.G . Lenard (Eds ) , Model . Hot Def . of steels , 1989 , Sp – Verlag , Berlin

92) E .  Anelli , ISIJ Intl ., 32 ( 1992)

93) Y. Tomita , Mater . SCI . & Tech ., 7( 1991)

94) T.J. Johansen , N . christiensen and B . Augland : Trans . Metall . Soc  AIME , 239 (1967) ,

95) R.C.Hudd , A . Jones and M.N.Kale : J. Iron Steel Inst ., 209 (1971) ,

96) K. Narita and S.Koyama : kobe steel Eng . Rep ., 18(1966) ,

97) H.Adrian : Mater . Sci . Technol .,8 (1992) ,

98) K.J.Irvine , F.B .Pickering and T . Gladman : J . Iron steel Inst ., 205 (1967 ) ,

99) R.P . Smith : Trans. Metall . Soc . AIME , 236 ( 1966 ) ,

100) G. Krauss : steels : Heat Treatment and processing principles , ASM , Ohio , (1990 ) ,

101) H.K.D .H . Bhadeshia : Bainite in Steels , 2nd ed ., the Institute of  Materials , London , (2001) ,

102) N . E . aloi , G . krauss , D . K . matlock , C.I . Van tyne and Y . W. cheng : proc . 36 th M WSP conf ., TMS , Warrendale , PA , (1995) ,

103) T. Siwecki , S . Zajac and G . Engberg : proc . 37 th MWSP conf ., TMS , warrendale , PA , (1996 ) ,

104) M.A . Linaza , J . L . Romero , J . M . Rodriguez – Ibabe and J .J . Urcola : Scr . Metall . Mater ., 32 (1995) ,

105) K.Sugimoto , T.Iida , J Sakaguchi and T . Kashima : ISIJ Int ., 40 (2000),

106) J. Adamczyk , M . opiela , A . Grajcar , 12th Int . Conf . AMME ‘ 2003 , 2003 , s . 21 , ( in polish )

107) High – Strength Low – Alloy Steels : Status , Selection and physical Metallurgy , Battelle Press ,

108) High – Strength Structural and High – Strength Low – Alloy Steels , Properties and Selection : Iron , Steels , and High – performance Alloys , Vol 1 , ASM Handbook , ASM international , 1990 , p 389 –

109) HSLA Steels : Metallurgy and Applications , American Society for Metals ,

110) HSLA Steels – Technology and Applications , American Society for Metals ,

111) Microalloyed HsLa Steels , ASM International ,

112) S . Gunnarson , H . Ravenshort and C . M . Bergstrom : proc fundamentals of Microalloying forging steels conf . , AIME , USA ,           ( 1987) ,

113)W. A . Szilva , K . J . Grassl  , J . W . weith and P . H . wright : proc microalloyed Bar  and forging Steels Conf . , TMS , Warrendale , PA , (19902 ) ,

114) Y. koyasu , H . shinozaki , N . Ishii , N . Suzuki and A . Sakaguchi : Nippon steel tech Rep ., 30 ( 1986 ) ,

115) T. Shiragha , S. Suzuki , H . kido , K . Matsumoto , M . Ishiguro and T Abe : NKK tech . Rev ., 53 ( 1988 )

116) Y . Koyasu , T. Takahashi , N . Ishii , H . Takada and H . Takeda : Nippon steel tech . Rep ., 47 (1990 ) ,

117) S.T. Aghdashi , A .R Khodandeh and M . Jahazi : proc . 4th Int . conf . on HSLA Steels , HSLA , 2000 the Metallurgical Industry press china (2000) ,

118) M.J . Balart , C . L. davis and M . strangewood : mater . Sci . Eng . A , A328 (2002)  ,

119) M . A . linaza , J . L . Romero  , J .M . Rodriguez – Ibabe and J .J . Urcola : Scr metall . mater ., 29 (1993) ,

120) A. J . nagy , G . krauss , D . K . matlock and S . W . Thompson : proc  36th MWSP conf ., TMS , warrendale , PA , (1995) ,

121) H.K.D.H .Bhadeshia   : mater  . Sci. Forum , 284 (1998) ,

122) D.K.Matlock , G . Krauss and J.G .speer : j . Mater . process . technol  117 (2001) ,

123) I.Madariaga , I . Gutierrez , C . Garcia – de Andres and C . Capdevila  Scr . Mater ., 41 (1999),

124) B.L. Bramfitt and J.G . speer : Metall . Trans ., 21A (1991),

125) M.Diaz – Fuentes and  I . Gutierrez : Mater . Sci . Eng . A A363 (2003 ) ,

126) I . Madariaga , I Gutierrez and H . K .D.H .Bhadeshia : Metall . Mater . Trans . A , 32A (2001) ,

127) C.H.Lee , H.K.D.H . Bhadeshia and H .C .Lee : Mater . Sci . Eng . A , A360 (2003) ,

128) J.M.Gregg and H.K .D.H . Bhadeshia : Acta Mater . , 45 (1997) ,

129) M.Diaz – Fuentes , A. Iza – Medina and I . Gutierrez : Metall . Mater .trans . A , 34A (2003) ,

130) G. Thewlis : Mater . Sci . technol ., 20 (2004) ,

131) I. Madariaga and I . Gutierrez : Acta Mater , 47 (1999) ,

132) J.S. Byun et al : Mater . Sci . Eng . A , A 319 (2001) ,

133) I. Madariaga , J .L . Romero and I . Gutierrez  : Metall . Mater . Trans  29A (1998) ,

134) A . J. Bailey , G. Krauss , S.W. Thompson , W.A .Szilva : proc .           3 th MWSP conf ., TMS , Warrendale , PA , (1996) ,

135) S.W . Thompson and G . Krauss : proc . 30th MWSP conf ., TMS , Warrendale , PA , (1989) ,

چکیده

فولادهای میکروآلیاژی به عنوان خانواده‌ای از فولادهای کم آلیاژ با استحکام بالا هستند تولید فولادهای میکروآلیاژی یکی از مهمترین پیشرفت های متالورژیکی چند دهه اخیر بوده است ، این فولادها به خاطر داشتن ترکیب عالی از خواصی همچون استحکام بالا ، چقرمگی مطلوب ، انعطاف پذیری و قابلیت جوشکاری مناسب ،‌از اهمیت ویژه‌ای برخوردارند مقادیر بسیار جزئی از عناصر میکروآلیاژی می توانند تأثیر به سزایی بر خواص نهایی فولاد داشته باشند

از آنجایی که این فولادها هنوز در دست تحقیق می باشند و همچنین از آنجائیکه یکی از روش های بهبود خواص در فولادهای میکروآلیاژی فرآیندهای ترمومکانیکی (‌از قبیل Hot  rolling  Forgingو;) می باشند لذا در این پروژه هدف ، بررسی این فرآیند ها و همچنین معرفی و طبقه‌بندی فولادهای میکروآلیاژی می باشد

مقدمه

یکی از انواع فولادهای میکروآلیاژی، فولادهای میکروآلیاژی آهنگری می باشند

 فولادهای میکروآلیاژی آهنگری اولین بار اواخر دهه 70 معرفی شدند لازمه ی استفاده از این فولادها رسیدن به استحکام کششی بالا حین آهنگری بود . همچنین از این طریق روش های سرد کردن و آبدیده کردن که پر هزینه و برای محیط زیست مضر بود حذف می شد با این حال بخش هایی که از فولاد آهنگری میکروآلیاژی ساخته می شوند در مقایسه با روش های دیگر استحکام کمتری داشته این موضوع کاربرد آنها را به ویژه در بخش های ایمنی محدود می کرد  اولین نسل فولادهای میکروآلیاژی (وانادیوم – منگنز – کربن ) دارای میکروساختار فریت – پرلیت بودند که استحکام پایینی داشتند  بنابراین در سالهای اخیر تحقیقات روی حذف یا کاهش پرلیت تشکیل شده پس از جوشکاری متمرکز شده، که دارای  میکروساختار فریت – پرلیت دارای استحکام ضربه بالا است. مانند فریت نوک تیز که آن را از طریق کنترل پارامترهای پرداخت و ترمومکانیکی اصلاح می کنند هدف نهایی این تلاش تولید بخش هایی با استحکام و سختی بالا که برای کاربرد در بخش های ایمنی اتومبیل مناسب هستند می باشند یک فریت نوک تیز در دمای پایین تر از فریت – پرلیت پرویوتکتویید و بالا تر از دمای آغاز مارتنزیت شکل می گیرد بنابراین دامنه ی دمای تغییر شکل آن مانند بینیت است همچنین گزارش شده است که مکانیزم تغییر شکل بینیت با فریت نوک تیز مشابه است . ولی سایت های هسته سازی مربوط به آنها متفاوت می باشد در بینیت ضخامت فریت در محدوده های دانه آستنیت آغاز می شود و دسته هایی از صفحات موازی با جهت کریستالوگرافی یکسان تشکیل می دهند. در مقابل به خوبی پذیرفته شده است که فریت نوک تیز به شکل درون دانه ای[1] یا مرز دانه ای در دسته هایی درون دانه های بزرگ آستنیت هسته سازی می کنند و سپس در جهت های گوناگون پخش می شوند همچنین گفته می شود فریت نوک تیز در حقیقت همان بینیت است که بصورت درون دانه ای یا مرز دانه ای هسته سازی شده است  یا اینکه از برخوردهای چند گانه فریت و یدمن اشتاتن و فریت پلی گونال که به صورت درون دانه ای یا مرز دانه ای یا هسته سازی شده است به وجود آمده است حالت هسته سازی فریت نوک تیز به گونه ای است که باعث تنظیم آشفته و بی نظمی صفحات و دانه های نرم می شوند و دانه های آن نرم می شود که حاصل آن میکروساختاری است که در مقایسه با بینیت عادی نظم کمتری دارد  این ساختار بهتر ، بیشتر شکافها را منحرف می کند و بنابراین از دیدگاه استحکام مناسب تر هستند

رشد صفحات فریت باعث می شود که میزان کربن آستنیت های باقیمانده بیشتر شوند که ممکن است بدون تغییر باقی بماند یا به مارتنزیت یا بینیت و یا کاربید های درهم تبدیل شوند

با به کارگیری کشش، آستنیت تغییر شکل نداده و به مارتنزیت تبدیل می شود که سختی کشش را افزایش می دهد در میکروساختار لایه ای[2] فریت ، حذف پرلیت و کاهش تولید کاربیدهای بین لایه ای[3] و کنترل میزان آستنیت باقیمانده برای رسیدن به استحکام بهینه و خواص سختی مناسب ضروری است

در قسمتی از این پروژه اثر پارامترهای فرآیند ترمومکانیکی روی ویژگی های میکروساختاری که در بالا ذکر شد مورد بررسی قرار گرفته است

هدف این قسمت توسعه ی فرآیند آهنگری برای رسیدن به استحکام و سختی بالا می باشد تا بتوان بخش های ایمنی اتومبیل را توسط آنها ساخت

اما بطور کلی هدف ما از انتخاب این موضوع و بحث و بررسی در مورد انواع فولادهای میکروآلیاژی بررسی روش های بهبود خواص مکانیکی این فولادها بطور مثال همین فولاد میکروآلیاژی آهنگری و سایر فولادها می باشد

برای بررسی روش های بهبود خواص مکانیکی فولادهای میکروآلیاژی روش های مختلفی وجود دارد از جمله روش عملیات حرارتی ، ترمومکانیکی و ; می باشد که ما در این پروژه از روش ترمومکانیکال استفاده می کنیم که شامل بخشهای زیر می باشد

1-بهبود استحکام ضربه و خواص کششی در فولاد میکرو آلیاژی آهنگری گرم Nb-V

2- مهندسی محصولات آهنگری فولادهای ساختمانی میکروآلیاژی

3- فولادهای کم آلیاژ و دارای استحکام بالا[4]

4- تبلور مجدد استاتیکی فولاد آستنیت تغییر شکل یافته و سینتیک رسوب القا شده در فولادهای میکروآلیاژی و انادیوم

5- ریز ساختار و ویژگی فولاد کم آلیاژ مقاوم به دما

6- فرآیند ترمومکانیکی و ریز ساختار فولاد میکرو آلیاژی و محصولات میله ای سیمی

1-2- فولادهای کم آلیاژ و دارای استحکام بالا

فولادهای کم آلیاژ و دارای استحکام بالا[5] و یا فولادهای میکروآلیاژ شده ، برای فراهم نمودن خصوصیات مکانیکی بهتر و یا مقاومت بیشتر در برابر خوردگی جوی نسبت به فولادهای کربن قراردادی طرح شده اند . این خصوصیات برای فولادهای آلیاژ در مفهوم طبیعی در نظر گرفته نمی شوند چون این فولادها برای برآوردن خصوصیات مکانیکی ویژه به جای ترکیب شیمیایی طرح می شوند فولادهای کم آلیاژ دارای استحکام های تسلیم بیشتر از MPa 275 یا ksi 40 می باشند . ترکیب شیمیایی یک فولاد کم آلیاژ با استحکام بالا به ویژه ممکن است برای ضخامت های متفاوت محصول فرق داشته باشد تا نیازمندی های خصوصیت مکانیکی را برآورده سازند . فولادهای کم آلیاژ دارای استحکام بالا به شکل  ورقه ای یا صفحه ای مقدار کربن پایینی دارند (c 05/0 تا 25/0 – % ) تا شکل پذیری و قابلیت جوش کافی را تولید کنند و آنها مقدار منگنز بالای 2% دارند . کمیت های کم ، کروم ، نیکل ، مولیبدن ، مس ، نیتروژن ، وانادیوم ، نیوبیوم ، تیتانیوم و زیرکونیوم در ترکیبات متفاوت بکار می روند . طبقه های فولاد کم آلیاژ با استحکام بالا عبارتند از درجه های متعدد استاندارد و اختصاصی طرح شده برای فراهم نمودن ترکیبات ویژه بهینه که دارای خصوصیاتی مثل استحکام ، چقرمگی ، شکل پذیری و قابلیت جوش و مقاومت به خوردگی جوی  می باشند. این فولادها به عنوان فولادهای آلیاژی در نظر گرفته نمی شوند حتی اگر چه خصوصیت بهینه اشان با استفاده از افزودنیهای کم آلیاژ به دست می آیند . علاوه بر این فولادهای کم آلیاژ با استحکام بالا بصورت یک طبقه فولاد جداگانه طبقه بندی می شوند که شبیه به فولاد نورد شده دارای کربن کم هستند و خصوصیات مکانیکی افزایش یافته ای دارند که با اضافه کردن مقادیر کم آلیاژ به دست می آیند و احتمالاً با تکنیک های بعمل آوری ویژه مثل نورد کاری کنترل شده و روش هایسرد سازی شتاب یافته حاصل می شوند . این تشخیص محصول جداگانه از فولادهای کم آلیاژ با استحکام بالا با این واقعیت منعکس می شوند که فولادهای کم آلیاژ با استحکام بالا معمولاً از قیمت پایه برای فولاد های کربن قیمت گذاری می شوند نه از قیمت پایه برای فولادهای آلیاژی علاوه بر این فولادهای کم آلیاژ و با استحکام بالا اغلب بر اساس خصوصیات مکانیکی حداقل فروخته می شوند همراه با میزان آلیاژ خاصی که برای صلاحدید تولید کننده فولاد بر جای می ماند]1[

 1-1-2- فولادهای[6] کم آلیاژ دارای استحکام بالا می توانند به6 طبقه تقسیم شوند

1-1-1-2- فولادهای هوازدگی ، که حاوی مقادیر کمی عناصر آلیاژ کننده اند ، مثل : مس و فسفر که مقاومت بالایی در برابر خوردگی جوی و استحکام دهندگی به محلول جامد دارند

2-1-1-2- فولادهای پرلیت – فریت میکروآلیاژ شده : که حاوی افزودنیهای بسیار کم( معمولاً کمتر از 10/0% ) کاربید قوی و یا عناصر تشکیل دهنده کربونیترید مثل نیوبیوم ، وانادیوم و یا تیتانیوم هستند تا به رسوب استحکام دهند ، تصفیه ی دانه ای انجام داده و احتمال کنترل دمای تغییر شکل را داشته باشند

3-1-1-2- فولادهای پرلیتی نوردکاری شده : که ممکن است شامل فولادهای منگنز – کربن باشند اما می توانند افزودنی های کمی از سایر عناصر آلیاژ کننده برای بالا بردن استحکام ، چقرمگی ، شکل پذیری و قابلیت جوش داشته باشند

4-1-1-2- فولادهای فریت سوزنی ( با بینیت کم کربن ) که از جمله فولادهای کم کربن هستند (کمتر از 05/0 % کربن ) همراه با ترکیب عالی از استحکام تسلیم بالا (به بالایی MPa690 و یا ksi 100 ) قابلیت جوش و شکل پذیری و چقرمگی خوب دارند

5-1-1-2- فولادهای دو فازی : که میکروساختمان مارتنزیتی دارند و در قالب فریتی پراکنده اند و ترکیب خوبی از شکل پذیری و استحکام کششی بالا دارند

6-1-1-2- فولادهای کنترل شده شکل آخال : که شکل پذیری پیشرفته ای را ایجاد کرده و چقرمگی از طریق ضخامت با افزودنی های کم کلسیم ، زیرکونیوم و یا تیتانیوم و یا احتمالاً عناصر خاکی نادر را فراهم می کنند بطوریکه شکل آخال های سولفید از رشته های کشیده شده به کره های کروی کوچک  پراکنده تغییر می کنند

این طبقه ها الزاما گروه بندی های مجزایی نیستند . مثلاً یک فولاد کم آلیاژ دارای استحکام بالا ممکن است خصوصیاتی بیش از یک گروه بندی داشته باشد . به عنوان مثال همه انواع فولادهای بالا می توانند از نوع شکل کنترل شده آخال باشند . فولاد پرلیت – فریت میکروآلیاژ شده نیز ممکن است آلیاژ های اضافی برای مقاومت خوردگی و استحکام دهندگی به محلول جامد داشته باشند]1[

 کاربردهای فولادهای کم آلیاژ با استحکام بالا عبارتند از انشعابات گاز و نفت ، وسایل نقلیه جاده ای و بزرگراهی سنگین ، ساختمان سازی و ماشین آلات کشاورزی ، تجهیزات صنعتی ، تانک های ذخیره سازی ، ماشین های معدن و راه آهن ، برف روب ها ، لاروبی کننده ها و کرجی ها ، تیرهای چراغ برق و تیرک های ساختمان و پانل ها از جمله موارد استعمال دیگر این فولادها می باشند

انتخاب یک فولاد ویژه با استحکام بالا به تعدادی از نیازمندی های کاربرد بستگی دارد از جمله کاهش ضخامت ، مقاومت خوردگی ، شکل پذیری و قابلیت جوش . در مورد بعضی از کاربردها مهمترین فاکتور در فرآیند انتخاب فولاد نسبت بهینه استحکام به وزن فولادهای کم آلیاژ با استحکام بالا یا فولادهای قراردادی کم کربن است این مشخصه فولادهای کم آلیاژ دارای استحکام بالا منجر به استفاده ی روز افزون شان در اجزاء اتومبیل شده است ]1[

2-1-2- اثرات افزودنی های میکروآلیاژ کننده

این بخش بر روی فولادهای پرلیت – فریت میکروآلیاژ شده تاکید کرده است ، که از افزودنی های عناصر آلیاژ کننده مثل نیوبیوم و وانادیوم برای بالا بردن کربن و یا محتواهای منگنز استفاده می کند ( و به این ترتیب توانایی حمل بار بالا می رود ) بررسی های گسترده در طول دهه 1960 بر روی اثرات نیوبیوم و وانادیوم روی خصوصیات مواد یا مصالح درجه ساختمانی باعث کشف این موضوع گردید که مقادیر کم نیوبیوم، وانادیوم هر کدام (10/0% ) فولادهای استاندارد کربن – منگنز را بدون تداخل با بعمل آوری بعدی مستحکم و قوی می سازند مقدار کربن نیز می تواند کم شود تا هم قابلیت جوش را بالا ببرد و هم چقرمگی را ، چون اثرات مقاومت دهندگی نیوبیوم و وانادیوم بخاطر کاهش در استحکام ناشی از کاهش در مقدار کربن جبران می شوند

خصوصیات مکانیکی فولادهای کم آلیاژ دارای استحکام بالای میکرو آلیاژ شده ، فقط در صورت افزایش عناصر میکرو آلیاژ کننده حاصل می شوند . لازمه ی وجود آستنیت که به اثرات پیچیده طرح آلیاژ و تکنیک های نورد کاری بستگی دارد ،  نیز یک فاکتور مهم در تصفیه دانه ای فولادهای کم آلیاژ دارای استحکام بالای نورد گرم است . تصفیه دانه ای در صورت وجود آستنیت با روش های نورد کاری کنترل شده ، باعث چقرمگی بالا و استحکامهای تسلیم زیاد در رنج 345 تا 620 مگا پاسکال(ksi 90 تا 50) می شود. ]1[

این توسعه فرآیندهای نوردکاری کنترل شده همراه با طرح آلیاژ، سطوح استحکام تسلیم بالایی را تولید کرده است که با پایین آمدن تدریجی مقدار کربن توام می باشد بسیاری از فولادهای کم آلیاژ دارای استحکام بالا میکروآلیاژ شده اختصاصی ، مقادیر کربن به کمی 60/0% و یا حتی کمتر دارند ، با این حال هنوز می توانند استحکام تسلیم حدود 485 مگا پاسکال (ksi 70) را توسعه داده و ایجاد نمایند . استحکام تسلیم بالا  ، با اثرات ترکیبی اندازه دانه ریز ایجاد شده و در طول نورد کاری گرم کنترل شده و استحکام دهندگی رسوب حاصل می شود که این خصوصیت ناشی از حضور وانادیوم ، نیوبیوم و تیتانیوم است

3-1-2- انواع گوناگون فولادهای فریت – پرلیت میکروآلیاژ شده عبارتند از

1-3-1-2-فولادهای میکروآلیاژ شده وانادیوم

2-3-1-2-فولادهای میکروآلیاژ شده نیوبیوم

3-3-1-2-فولادهای میکروآلیاژ شده وانادیوم – نیوبیوم

4-3-1-2- فولادهای مولیبدن – نیوبیوم

5-3-1-2-فولادهای میکروآلیاژ شده وانادیوم – نیتروژن

6-3-1-2-فولادهای میکروآلیاژ شده تیتانیوم

7-3-1-2-فولادهای میکروآلیاژ شده نیوبیوم – تیتانیوم

8-3-1-2-فولادهای میکروآلیاژ شده تیتانیوم – وانادیوم

این فولادها ممکن است شامل عناصر دیگری هم باشند تا مقاومت خوردگی بالایی داشته باشند و مقاومت محلول جامد را بالا برده و قابلیت سخت کاری زیادی را در بر بگیرند( اگر محصولات تغییر شکل غیر از فریت – پرلیت بهینه باشند . ) ]1[

 1-3-1-2- فولادهای میکروآلیاژ شده وانادیوم

تهیه و توسعه فولادهای حاوی وانادیوم مدت کوتاهی پس از تهیه فولادهای هوازدگی رخ می دهد و محصولات نورد شده صاف با بیش از 10/0%  وانادیوم بطور وسیعی در شرایط نورد گرم بکار می روند فولادهای حاوی وانادیوم نیز در شرایط نورد کنترل شده ، نرمال شده و یا کوئنچ و تمپر شده بکار می روند

وانادیوم با تشکیل ذرات رسوب ریز ( با قطر 5  الی 100 نانومتر ) V (CN) در فریت در طول سرد سازی پس از نورد گرم به قوی ساختن کمک می کند . این رسوبات وانادیوم ، که به پایداری رسوبات نیوبیوم نیستند ، محلول در همه دماهای عادی نورد کاری هستند که برای ایجاد فریت دانه ریز مفید می باشند (بخش فولادهای میکروآلیاژ شده نیوبیوم  در این تحقیق را مشاهده نمایید)  قوی ساختن به وسیله وانادیوم ، بین 5تا 15 مگا پاسکال ( ksi 2 و 7/0 ) در هر 01/0 ترکیب شیمیایی وانادیوم است و این حد متوسط به مقدار کربن و سرعت سرد سازی حاصل از نورد گرم بستگی دارد ( و بنابراین به ضخامت مقطع نیز بستگی دارد ) سرعت سرد سازی که با دمای نورد گرم

و ضخامت مقطع معین می شود برروی قوی ساختن سطح رسوب در فولاد 15/0% وانادیوم تاثیر می گذارد که در شکل 1-2 نشان داده شده است

 در سرعت های سرد سازی بالا بیشتر ذرات (CN) V در محلول باقی می ماند و بنابراین بخش کوچکتری از ذرات (CN) V رسوب کرده و قوی ساختن نیز کاهش می یابد در مورد یک ضخامت مقطع داده شده و محیط سرد سازی  ، سرعت های سرد سازی می توانند با افزایش یا کاهش دما قبل ازسرد سازی به ترتیب افزایش یافته و یا کاهش یابند. افزایش دما باعث بزرگتر شدن اندازه دانه ای آستنیت می شود در حالیکه کاهش دمای نورد کاری را دشوار تر می سازد

مقدار منگنز نیز بر روی استحکام دادن فولادهای میکروآلیاژ شده وانادیوم تاثیر می گذارد اثر منگنز روی فولاد وانادیوم نورد شده گرم در جدول (2-2) نشان داده شده است با افزایش 9/0 درصد منگنز که ناشی از قوی ساختن محلول جامد است . قوی کردن رسوب وانادیوم نیز افزایش می یابد چون منگنز دمای تغییر شکل آستنیت به فریت را پایین می آورد به این ترتیب باعث پراکندگی رسوب ریزتر می شود . این اثر منگنز روی قوی ساختن رسوب بزرگتر از اثرش در فولادهای نیوبیوم است با اینحال استحکام مطلق در یک فولاد نیوبیوم دارای Mn 2/1 % فقط حدود 50 مگا پاسکال ( ksi 7) کمتر از فولاد وانادیوم است اما در سطح آلیاژی بسیار کمتری است ( یعنی nb 06/0 % در برابر 14/0% وانادیوم ) سومین عاملی که روی استحکام فولادهای وانادیوم تاثیر می گذارد اندازه دانه ای فریت تولید شده بعد از سرد سازی از دمای آستنیت کننده است . اندازه های دانه ای فریت ریزتر (که نه تنها باعث استحکام های تسلیم بالاتر شده بلکه چقرمگی و شکل پذیری را نیز بالا می برند) می توانند با دماهای تغییر شکل کمتر آستنیت به فریت و یا با شکل گیری اندازه های دانه ای آستنیت ریز تر قبل از تغییر شکل تولید شوند پایین آوردن دمای تغییر شکل که روی قوی ساختن سطح رسوب تاثیر می گذارد می تواند با افزودن آلیاژ و یا با سرعت های سردسازی افزایش یافته ایجاد شود  در مورد یک سرعت سرد سازی داده شده تصفیه اندازه دانه فریت و تصفیه اندازه دانه آستنیت در طول نورد کاری صورت می گیرد

اندازه دانه آستنیت فولادهای نورد گرم با تبلور مجدد و رشد دانه ای آستنیت در طول نورد کاری معین می شود فولادهای نورد گرم وانادیوم معمولاً دستخوش نوردکاری قراردادی قرار می گیرند اما با نورد کنترل شده تبلور مجدد تولید می شود. با نورد کاری قراردادی فولادهای وانادیوم قوی ساختن مناسب رسوب را تهیه کرده و قوی ساختن نسبتاً کمی را از تصفیه دانه ایجاد می کنند استحکام تسلیم حداکثر فولادهای وانادیوم نورد گرم قراردادی با 25/0 درصد کربن و 087/0 درصد وانادیوم حدود 450 مگا پاسکال (ksi  65) است . حد عملی استحکام های تسلیم برای فولاد میکرو آلیاژ شده وانادیوم نورد گرم حدود 415 مگا پاسکال (ksi  60) است حتی وقتی تکنیک های نورد کاری کنترل شده بکار روند

فولادهای وانادیوم که در معرض نورد کاری کنترل شده تحت تبلور مجدد قرار می گیرند نیاز به اضافه کردن تیتانیوم دارند بطوریکه رسوب ریزی ازTiN  تشکیل می شود که رشد دانه آستنیت را بعد از تبلور مجدد محدود می سازد .  استحکام های تسلیم از نورد کاری کنترل شده قراردادی به حد عملی حدود 415 مگا پاسکال (ksi  60) محدود شده است که به دلیل فقدان تاخیر تبلور مجدد است وقتی هم استحکام و هم چقرمگی ضربه ای از جمله عوامل مهم باشند در این صورت فولاد نیوبیوم کم کربن و نورد کاری شده کنترل شده قابل ترجیح است ( مثل ورقه مقاوم به ترک خوردگی تحریک شده هیدروژن 60- X )]1[

 2-3-1-2- فولادهای میکروآلیاژ شده نیوبیوم

مثل وانادیوم ، نیوبیوم  استحکام تسلیم را با سخت کردن رسوب ، بالا می برد ، میزان افزایش به اندازه و مقدار کاربیدهای نیوبیوم رسوب کرده بستگی دارد

 با این حال نیوبیوم نیز یک تصفیه کننده دانه ای موثر از وانادیوم است . بنابراین اثر ترکیبی قوی کردن رسوب و تصفیه دانه فریت نیوبیوم، یک عمل قوی کننده موثرتر از وانادیوم می سازد . اضافه کردن نیوبیوم معمولاً حدود 04/0% تا 02/0% درصد است

استحکام دهی با نیوبیوم 35 تا 45 مگا پاسکال (5تا 6 ksi )در هر 01/0 درصد اضافه کردن است . این استحکام دهی با نقص قابل توجهی از چقرمگی فاز توام می باشد . تا اینکه روندهای نوردکاری ویژه ای تهیه شدند و مقادیر کربن برای جلوگیری از شکل گیری بینیت فوقانی پایین آورده شدند . بطور کلی دماهای پرداخت کاری بالا و عبورهای تغییر شکل نوری در مورد فولادهای نیوبیوم بکار می روند چون ممکن است باعث افزایش اندازه های دانه های مخلوط و یا فریت و یدمن اشتاتن شود که چقرمگی را ناقص می کند . فولادهای نیوبیوم با نورد کاری کنترل شده و سرد کردن مستقیم تولید می شوند

نوردکاری کنترل شده تحت تبلور مجدد فولاد نیوبیوم می تواند بدون تیتانیوم موثر باشد و این در حالی است که نورد کاری تحت تبلور مجدد فولادهای وانادیوم برای تصفیه ی دانه ای به تیتانیوم نیاز دارد . همچنین نیوبیوم بسیاری مورد نیاز است و فولادهای تیتانیوم – نیوبیوم می توانند در دماهای بالاتر نورد کنترل شده تحت تبلور مجدد بشوند. در حال حاضر فولادهای سطح ساحلی با ضخامت بیش از 75 میلیمتر (in 3) و با استحکام های تسلیم 345 تا 415 مگا پاسکال (50 تا 60 ksi) بطور معمول تولید می شوند . ]1[

3-3-1-2- فولادهای میکروآلیاژ شده نیوبیوم – وانادیوم

فولادهای میکروآلیاژ دارای نیوبیوم  و وانادیوم استحکام تسلیم بالاتری در شرایط نورد گرم بطور قراردادی نسبت به فولادهای موجود را دارد . مثل فولادهای نورد گرم ، فولادهای وانادیوم – نیوبیوم تقریباً همه از استحکام افزایش یافته اشان به دلیل استحکام دهی به رسوب مشتق می شوند و بنابراین دماهای انتقال بالای شکل پذیر – شکننده دارند . اگر فولاد نورد، کنترل شده باشد اضافه کردن نیوبیوم و وانادیوم با هم از جمله مزایایی برای افزایش استحکام تسلیم و پایین آوردن دماهای انتقالی شکل پذیر – شکننده یا تصفیه دانه ای است

معمولاً فولادهای نیوبیوم – وانادیوم با مقادیر کربن نسبتاً پایین شناخته می شوند . ( کربن کمتر از %10/0) این مقدار پرلیت را کاهش می دهد و چقرمگی ، شکل پذیری و قابلیت جوش را بالا می برد . این فولادها ، معمولاً به عنوان فولادهای کاهش یافته پرلیت شناخته می شوند . ]1[

4-3-1-2- فولادهای میکروآلیاژ شده مولیبدن – نیوبیوم

ممکن است میکروساختمان پرلیت – فریت داشته باشند و یا یک میکرو ساختمان فریت سوزنی داشته باشند ، در فولادهای نیوبیوم، اضافه کردن مولیبدن ، استحکام و تسلیم و استحکام کششی را حدود 20 مگا پاسکال (ksi 3) تا 30 مگا پاسکال (ksi 5/4) به ترتیب در هر 1/0 درصد روی رنج تحقیق شده 27/0 درصد مولیبدن افزایش می دهد ، اثر اصلی مولیبدن روی میکروساختمان – تغییر مورفولوژی پرلیت و معرفی بینیت فوقانی به صورت جانشینی جزیی برای پرلیت است . با این حال ، چون مقادیر جداگانه استحکام پرلیت و بینیت تا حدی مشابهند از اینرو پیشنهاد شده است که افزایش استحکام ناشی از قوی ساختن محلول جامد و قوی ساختن زیاد رسوب (CN)  Nb حاصله با نیوبیوم – مولیبدن باشد

واکنش بین مولیبدن و نیوبیوم ( یا وانادیوم ( با اضافه کردن مولیبدن به صورت توزیعی برای افزایش قوی ساختن رسوب پیشنهاد شده است . این اثر به رسوب کاهش یافته در آستنیت به دلیل افزایش در قابلیت انحلال ناشی از کاهش در فعالیت کربن ایجاد شده با مولیبدن نسبت داده شده است . با رسوب کمتر در آستنیت ، رسوبات بیشتری  می توانند در فریت تشکیل شوند که باعث بالا رفتن استحکام می شود ، همچنین مولیبدن در خود رسوبات شناسایی شده است ، حضورش ممکن است ، کارآیی قوی شدن را با افزایش و تنش های چسبندگی ( پیوستگی ( و یا با افزایش کسر حجم رسوب ، بالا برد ، این فاکتور های متالوژیکی وقتی در رابطه با کارآیی نورد کنترل شده برای دماهای زیر دمای AR3 در نظر گرفته می شوند، منجر به تهیه فولاد خط لوله نیوبیوم- مولیبدن 70-X مقرون به صرفه تر می شوند . ]1[

5-3-1-2- فولادهای میکرو آلیاژ شده ی وانادیوم – نیتروژن

وانادیوم ، به طور قوی تر از نیوبیوم ، با نیتروژن ترکیب می شود و رسوبات نیترید وانادیوم در فولاد نیتروژن – وانادیوم تشکیل می دهند . افزودنی های نیتروژنی به فولادهای دارای استحکام بالا و حاوی وانادیوم ، از لحاظ تجاری مهم شدند چون افزودنی ها ، سخت کاری رسوب را بالا می برند . سخت کاری رسوب ممکن است با کاهش در چقرمگی فاز همراه باشد ، اما این کاهش اغلب با کم کردن محتوای کربن دیگر صورت نمی گیرد ، رسوب نیترید وانادیوم نیز به صورت یک تصفیه کننده دانه ای عمل می کند

بعضی از تولید کنندگان از افزودنی های نیتروژن استفاده می کنند تا به قوی ساختن رسوب ورقه سرد و کنترل شده با ضخامت بالای 5/9 میلیمتر (in 375/0) کمک کنند ورقه های نورد گرم دارای وانادیوم و دارای 022/0% تا 018/0% درصد نیتروژن باسرد سازی کنترل شده با ضخامت بالای 16 میلیمتر ( in 625/0 ) و دارای استحکام های تسلیم 550 مگا پاسکال (ksi 80)تولید شده اند . با این حال ، ترک خوردگی به تاخیر افتاده ، یک مشکل اصلی در این فولادهاست . استفاده از نیتروژن ، برای فولاد هایی توصیه  نمی شود که جوش می خورند چون اثر مخربی روی چقرمگی فاز در ناحیه ی تحت تاثیر گرما دارد.]1[

6-3-1-2- فولادهای میکروآلیاژ شده ی تیتانیوم

تیتانیوم در فولاد های کم کربن به صورت ترکیباتی شکل می گیرد که تصفیه دانه ، قوی ساختن رسوب و کنترل شکل سولفید را فراهم می آورد . با اینحال ، چون تیتانیوم نیز یک دی اکسید کننده قوی است ، از این رو ، تیتانیوم می تواند فقط در فولادهای کاملاً کشته شده به کار رود ( آلومینیوم دی اکسید شده ) به طوری که تیتانیوم برای  شکل دهی ترکیباتی غیر از اکسید تیتانیوم موجود است . از لحاظ تجاری ، رسوب فولاد های قوی شده با تیتانیوم با ضخامت بیش از 9/5 میلیمتر (in 375/0 ) و با استحکام تسلیم حداقل متغیر از 345 تا 550 مگا پاسکال (50 تا 80 ksi) با نورد کاری کنترل شده مورد نیاز برای به حداکثر رساندن استحکام و بالا بردن چقرمگی ، تولید می شوند

مثل فولادهای نیوبیوم و یا وانادیوم ، فولادهای میکروآلیاژ شده تیتانیوم ، با مکانیزم هایی مستحکم می شوند که با ترکیبی از تصفیه دانه و استحکام دهی رسوب توام می باشند ، ترکیبی که به مقدار افزودنی های آلیاژ و روشهای به عمل آوری بستگی دارد . در فولادهای ریختگی پیوسته و یا مجدداً حرارت داده شده ، مقادیر کمی از تیتانیوم  ( تیتانیوم  025/0 درصد> ) از جمله تصفیه کننده های دانه موثرند . چون ریشه دانه آستنیت با نیترید تیتانیوم به تاخیر می افتد (شکل a3-2 )

 مقادیر کم تیتانیوم در نورد کاری کنترل شده تحت تبلور مجدد نیز موثر است ، چون نیترید تیتانیوم ، رشد دانه آستنیت باز متبلور شده را به تاخیر می اندازد . در نورد کاری کنترل شده قراردادی ، تیتانیوم ، تصفیه کننده دانه متوسط است ، که تصفیه کمتر از نیوبیوم را ایجاد می کند اما بیشتر از وانادیوم است

بنابراین برای قوی کردن رسوب ( شکل b  3-2) مقدار کافی تیتانیوم برای تشکیل کاربید تیتانیوم مورد نیاز است، درصد های کم تیتانیوم ( تیتانیوم 025/0درصد > ) اساساً نیترید تیتانیوم تشکیل می دهند ، که روی رشد دانه آستنیت تاثیر دارند اما اثر کم روی قوی کردن رسوب دارند چون رسوب های تشکیل شده در مایع ، درشت و ناهموار هستند . افزایش مقدار تیتانیوم منجر به تشکیل آخال های سولفید منگنز حاوی تیتانیوم (Mn,Ti)S می شود و سپس کربوسولفیدهای کروی ، Ti4,C2,S2 تشکیل می شوند ( که کنترل شکل سولفید را انجام می دهند . ) ]1[

 شکل گیری Ti4,C2,S2همراه با شکل گیری کاربید تیتانیوم (TiC ( است و با آن دنبال می شود ، که می تواند برای قوی کردن رسوب فولادهای کم کربن به کار رود . برای تعیین مقدار تیتانیوم که برای قوی کردن رسوب موجود است ، مقدار کامل تیتانیوم باید برای شکل گیری نیترید تیتانیوم و کربوسولفیدهای نامحلول و درشت تنظیم شود . این نمونه ها در قوی ساختن رسوب ، ته نشین نمی شود . استحکام مشاهده شده از لحاظ آزمایشی که از رسوب TiC افزایش می یابد، برای هر ذره بسیار ریزی ( کمتر از 30 آنگستروم) تا بالای 440 مگا پاسکال متغیر است (شکلb3-2)

اگر مقدار کافی تیتانیوم به کار رود ، تیتانیوم بعداً می تواند استحکام دهی رسوب بیشتر از نیوبیوم و یا وانادیوم فراهم کند . با این حال چون سطوح بالاتر استحکام دهی رسوب ، معمولاً توام با چقرمگی کم شده است ، از این رو تصفیه دانه برای توسعه و بالا بردن چقرمگی ضروری می شود

تیتانیوم یک تصفیه کننده دانه ای متوسط است ( در مقایسه با نیوبیوم و وانادیوم در فولادهای نورد گرم شده ) و سطوح بالای استحکام دهی رسوب فولادهای میکروآلیاژ شده تیتانیوم باعث کاهش شدید در چقرمگی می شود . استفاده از فقط تیتانیوم به عنوان یک استحکام دهنده در نوار نورد گرم پر استحکام منجر به تغییر پذیری غیر قابل قبول در خصوصیات مکانیکی می شود . (شکلb3-2). ]1[

7-3-1-2- فولادهای میکروآلیاژ شده ی تیتانیوم – نیوبیوم

[1] – Intergranular

[2] – Lath

[3] – Inter Lath

[4] – High Strength Low Alloy Steels

[5] – High Strength Low Alloy Steels

[6] – High Strength Low Alloy Steels


برای دریافت پروژه اینجا کلیک کنید