بررسی و شناخت نانو لوله های کربنی در word دارای 143 صفحه می باشد و دارای تنظیمات و فهرست کامل در microsoft word می باشد و آماده پرینت یا چاپ است
فایل ورد بررسی و شناخت نانو لوله های کربنی در word کاملا فرمت بندی و تنظیم شده در استاندارد دانشگاه و مراکز دولتی می باشد.
این پروژه توسط مرکز مرکز پروژه های دانشجویی آماده و تنظیم شده است
فهرست مطالب :
چکیده
مقدمه:
فصل اول :
1. تولید نانولوله های کربنی با سوزاندن گیاهان:
فصل دوم :
1. انتقال گرما به وسیله نانوسیالات
2 . تهیه نانوسیالات
3 . انتقال حرارت در سیالات ساکن
4 . جریان، جابهجایی و جوشش
5 . هدایت حرارتی نانوسیال
6 . چشمانداز
فصل سوم :
1. محققان با نانو لولههای کربن نخستین مدارالکترونیک تک مولکولی را ساختند :
2. پژوهشگران ایرانی موفق به افزایش شار و انرژی مغناطیسی نانوآلیاژ مغناطیسی شدند:
3. نانولولههای پلیمری پایدار با کاربردهای نانو زیستفنآوری تولید شد :
فصل چهارم :
1. خوردگی در جهان نانو :
3. فناوری نانو چیست و چه اثری در آینده جهان خواهد داشت؟
4. حفظ خواص نانولولههای کربنی متصل شده با افزودن هیدروژن
5. روشی برای تلخیص نانو لوله های نارس
6. ساخت نانو مدارهای رایانهای نانو لوله ای
7. رشد قطعات بریده شده نانولولههای کربنی
8. مشاهده نانولولههای کربنی با پرتوهای الکترونی
9. انحناپذیری نانولولهها، عاملی جهت کلیدزنی
10. ساخت جلیقههای ضدگلوله به کمک نانولولهکربنی
11. نانو لولههای کربنی جاذب با آستانه تراوایی کمتر
فصل پنجم :
1. جابهجایی شکاف انرژی نانولولههای کربنی با دما
2. عاملدار کردن نانولولهها بدون کاهش هدایت الکتریکی آنها
3. غیرسمیکردن نانو لولههای کربنی با پوششدار کردن آنها
4. خالصسازی نانولولههای کربنی از طریق فرآیند مبتنی بر لیزر
5. رشد نانو لولههای کربنی با روش CVD در دمای پایین
فصل ششم :
1. پر نمودن نانو لوله های نیترید بور
2. نانو لولههای کربنی داغترین موضوع در فیزیک
3. تولید نانولولههای کربنی تکدیواره به وسیله یک فرآیند پلاسمای منحصر به فرد
4. معرفی پایان نامه :سنتز نانولولههای کربنی با روش رشد بر روی پایه کاتالیست آلومینا
5. تشخیص و شناسایی بخارهای شیمیایی به کمک نانولولههای کربنی
روبرت ای فریتاس
6. نخستین کنگره بین المللی نانو فناوری و کابردهای آن
7. نانولوله کربنی
8. نانولولههای کربنی خالص و اولین آزمایش درون بدن موجود زنده
9. کاربرد نانولولهها در پیلهای خورشیدی
فصل هفتم
1. تأثیر فناورینانو بر بازارهای انرژی
3. سنتز نانولولههای کربنی با روش رشد بر روی پایه کاتالیست آلومینا
4. نانولولههای کربنی خالص و اولین آزمایش درون بدن موجود زنده
واکنشهای جدید
مسیر انتقال کوتاه
5. مزایای الکترودهای نانوساختار برای تجهیزات ذخیره انرژی پرسرعت
6. استانداردسازی نانولولههای کربنی
7. چالشهای استانداردسازی نانولولههای کربنی
9. روشها و ابزار اندازهگیری برای مشخصهیابی نانولولههای کربنی
10. کش آمدن نانولولههای کربنی؛ زیربنای توسعه نسل آینده نیمهرساناها و نانوکامپوزیتها
11. ساخت نانوسیمهای مقاوم با ساختار هیبریدی جدید
12. نانو لوله کربنی
فصل هشتم :
1.خواص نانولوله کربنی
2.کاربرد نانوتیوب در صنعت ساختمان
3.دلایل رجحان نانولوله کربنی عبارتند از
منابع
چکیده
تحقیقات اخیر روی نانوسیالات، افزایش قابل توجهی را در هدایت حرارتی آنها نسبت به سیالات بدون نانوذرات و یا همراه با ذرات بزرگتر (ماکرو ذرات) نشان میدهد. از دیگر تفاوتهای این نوع سیالات، تابعیت شدید هدایت حرارتی از دما، همچنین افزایش فوقالعاده فلاکس حرارتی بحرانی در انتقال حرارت جوشش آنهاست. نتایج آزمایشگاهی به دست آمده از نانوسیالات نتایج قابل بحثی است که به عنوان مثال میتوان به انطباق نداشتن افزایش هدایت حرارتی با تئوریهای موجود اشاره کرد. این امر نشان دهنده ناتوانی این مدل ها در پیشبینی صحیح خواص نانوسیال است. بنابراین برای کاربردی کردن این نوع از سیالات در آینده و در سیستمهای جدید، باید اقدام به طراحی و ایجاد مدلها و تئوریهایی شامل اثر نسبت سطح به حجم و فاکتورهای سیالیت نانوذرات و تصحیحات مربوط به آن کرد
سیستمهای خنک کننده، یکی از مهمترین دغدغههای کارخانهها و صنایعی مانند میکروالکترونیک و هر جایی است که به نوعی با انتقال گرما روبهرو باشد. با پیشرفت فناوری در صنایعی مانند میکروالکترونیک که در مقیاسهای زیر صد نانومتر عملیاتهای سریع و حجیم با سرعتهای بسیار بالا (چند گیگا هرتز) اتفاق میافتد و استفاده از موتورهایی با توان و بار حرارتی بالا اهمیت به سزایی پیدا میکند، استفاده از سیستمهای خنککننده پیشرفته و بهینه، کاری اجتنابناپذیر است. بهینهسازی سیستمهای انتقال حرارت موجود، در اکثر مواقع به وسیله افزایش سطح آنها صورت میگیرد که همواره باعث افزایش حجم و اندازه این دستگاهها میشود؛ لذا برای غلبه بر این مشکل، به خنک کنندههای جدید و مؤثر نیاز است و نانو سیالات به عنوان راهکاری جدید در این زمینه مطرح شدهاند. نانوسیالات به علت افزایش قابل توجه خواص حرارتی، توجه بسیاری از دانشمندان را در سالهای اخیر به خود جلب کرده است، به عنوان مثال مقدار کمی (حدود یک درصد حجمی) از نانوذرات مس یا نانولولههای کربنی در اتیلن گلیکول یا روغن به ترتیب افزایش 40 و 150 درصدی در هدایت حرارتی این سیالات ایجاد میکند [2] [3]؛ در حالی که برای رسیدن به چنین افزایشی در سوسپانسیونهای معمولی، به غلظتهای بالاتر از ده درصد از ذرات احتیاج است؛ این در حالی است که مشکلات رئولوژیکی و پایداری این سوسپانسیونها در غلظتهای بالا مانع از استفاده گسترده از آنها در انتقال حرارت میشود. در برخی از تحقیقات، هدایت حرارتی نانوسیالات، چندین برابر بیشتر از پیشبینی تئوریها است. از دیگر نتایج بسیار جالب، تابعیت شدید هدایت حرارتی نانوسیالات از دما [4] [5] و افزایش تقریباً سه برابری فلاکس حرارتی بحرانی آنها در مقایسه با سیالات معمولی است.
مقدمه:
نانولولههای کربنی به عنوان یکی از دو جایگزین اصلی سیمها در داخل تراشهها و دیگر اجزاء الکترونیکی در دهه آینده مطرح هستند. این ساختارها نه تنها هادی خوبی برای الکتریسته هستند، بلکه فوقالعاده کوچکاند، بطوری که به سازندگان اجازه استفاده از میلیاردها ترانزیستور را در یک تراشه میدهند.
امروزه نانولولهها را میتوان تنها در آزمایشگاه و به میزان اندک تولید کرد. دستیابی به روشهای تولید انبوه، سالها به طول میانجامد.
در روش کاتالیست فلزی، نیکل، آهن یا کبالت همراه با اتمهای کربن تا ذوب شدن فلز حرارت داده میشوند، سپس نانولولههای تکدیواره بر روی سطح فلز مذاب تشکیل میشوند.
متأسفانه در این روش ذرات فلزی به نانولولهها چسبیده و آنها را مغناطیسی کرده و برای استفاده در ترانزیستورها غیرقابل استفاده میگردانند. آویریس میگوید: "در هر نانولوله ذرهای از فلز وجود دارد که برای زدودن آنها باید نانولولهها را در اسیدنیتریک جوشانید که این عمل باعث تخریب نانولولهها میگردد."
در روش ابداعــی شرکتIBM نانولولهها تخریب نمیشوند. پژوهشگران، کریستالی که از لایههای سیلیکون و کربن تشکیل یافته را تا 1650 درجه سانتیگراد حرارت دادند. این عمل باعث تبخیر سیلیکون و باقی ماندن لایهای از کربن میگردد. از آنجا که کربن از قبل به سیلیکون متصل شده است، پس از تبخیر سیلیکون، برای پیوند با مواد دیگر آزاد میشود. در این حالت، پیوند کربن با خودش، موجب تشکیل لولههای کربنی میشود.
آویریس میگوید، ساختار اتمی که این لولههای کربنی اختیار میکنند بعداً به صورت الگویی برای آرایش لولهها به کار میرود به طوری که میتوان از آنها در ساخت پردازشگرها استفاده کرد. این ساختارها برای ایجاد ترانزیستور باید به صورت شبکههایی از خطوط موازی تشکیل شوند.
فصل اول
1. تولید نانولوله های کربنی با سوزاندن گیاهان:
1. تولید نانولوله های کربنی با سوزاندن گیاهان:
محققین دانشگاه Northeast Normal چین موفق به ساخت نانوتیوب های کربنی چند دیواره با قطر 50-30 نانومتر با گرم کردن چمن در حضور اکسیژن شدند.
به گفته Enbo Wang تولید نانوتیوب های حاصله از چمن دستاورد جدید و سازگار با محیط زیست است. استفاده از محصولات طبیعی تجدید پذیر به عنوان منبع کربن در حضور اکسیژن، به عنوان یک واکنش اکسیداسیونی، فواید زیادی را در حفظ و نگهداری محیط زیست، بهره¬برداری از مزارع و محصولات طبیعی عاید انسان خواهد کرد.
در این پژوهش Wangو همکاران، پس از جمع آوری نمونه های چمن و قبل از خشک کردن، آنها را خرد کرده و در حرارت 250 درجه سانتی گراد به مدت 1 ساعت قرار دادند . سپس مواد حاصله را در 600 درجه سانتی گراد به مدت 20 دقیقه در ظروف دربسته حاوی 15میلی لیتر اکسیژن گذاشته و پس از سرد نمودن به آن اکسیژن تزریق کرده و مجددا چرخه دمایی را تا 50 دوره تکرار کردند .
محصول این فرایند نانوتیوبی باطول µm 1، قطر خارجی nm30-50 و قطر داخلی nm 10-30 بود که محققین بازده این آزمایش را 15% تخمین زده بودند . اخیرا با افزودن آب به این واکنش دریافتند که سنتز و خالص سازی نانوساختارها با سیستم C-H-O به راحتی ممکن می شود .
به گفته Wang این حالت ما را به دنبال روش جدیدی برای ساخت مستقیم نانولوله ها از طریق تغییر کربوهیدرات ها و تبدیل آنها به آب و کربن خالص سوق می دهد، به طوری که نه تنها مشکل محدودیت کربن خالص را حل می کند ، بلکه به ما ایده به دست آوردن اتم فعال کربن برای ساخت نانوتیوب ها را هم می دهد .
به نظر محققین پیش تیمار چمن ها باعث از بین رفتن پروتئین ها و ترکیبات روغنی می شود و در پی آن تیمار در دمای 600 درجه سانتی گراد باعث دهیدراته شدن سلولز و و تبدیل آن به ساختارهای نانوکربنی شود همانند فرایند اکسیداتیو دلیگنیفیکاسیون می¬شود.
اکثر گیاهان و مخصوصا چمن ها دارای آوندهایی از جنس سلولز، همی سلولز و لیگنین برای حمل و نقل مواد به سایر اندام ها می باشند. این ساختارهای لوله مانند منبعی از کربن هستند که نقش اساسی در تولید نانوتیوب ها ایفا می کنند. استفاده از همان دما بر روی کربوهیدرات هایی که فاقد شکل لوله ای هستند مانند گلوکز و ساکارز، نانو لوله های اندکی را تولید خواهد کرد . اما چوب و کنف- مواد گیاهی با ساختار لوله ای - منبع مفیدی برای تولید نانولوله ها می باشند.
به گفته Zhenhui Kang ، نانولوله های تولیدی دارای نقص هایی در دیواره می باشند اما با این وجود از آنها می توان در کاتالیز مواد مانند کاتالیزورها استفاده نمود.
به گفتهُ وی محققان با بررسی تاثیر واکنش های مختلف بر میزان تولید نانو لوله های کربنی به دنبال یافتن راه ایده آل با راندمان بالا و هزینه کم می باشند که این پروسه راه جدیدی را برای گسترش ساخت نانولوله های کربنی فراهم می کند.
فصل دوم
1. انتقال گرما به وسیله نانوسیالات
2 . تهیه نانوسیالات
3 . انتقال حرارت در سیالات ساکن
4 . جریان، جابهجایی و جوشش
5 . هدایت حرارتی نانوسیال
6 . چشمانداز
1. انتقال گرما به وسیله نانوسیالات
اخیراً استفاده از نانوسیالات که در حقیقت سوسپانسیون پایداری از نانوفیبرها و نانوذرات جامد هستند، به عنوان راهبردی جدید در عملیات انتقال حرارت مطرح شده است.
تحقیقات اخیر روی نانوسیالات، افزایش قابل توجهی را در هدایت حرارتی آنها نسبت به سیالات بدون نانوذرات و یا همراه با ذرات بزرگتر (ماکرو ذرات) نشان میدهد. از دیگر تفاوتهای این نوع سیالات، تابعیت شدید هدایت حرارتی از دما، همچنین افزایش فوقالعاده فلاکس حرارتی بحرانی در انتقال حرارت جوشش آنهاست. نتایج آزمایشگاهی به دست آمده از نانوسیالات نتایج قابل بحثی است که به عنوان مثال میتوان به انطباق نداشتن افزایش هدایت حرارتی با تئوریهای موجود اشاره کرد. این امر نشان دهنده ناتوانی این مدل ها در پیشبینی صحیح خواص نانوسیال است. بنابراین برای کاربردی کردن این نوع از سیالات در آینده و در سیستمهای جدید، باید اقدام به طراحی و ایجاد مدلها و تئوریهایی شامل اثر نسبت سطح به حجم و فاکتورهای سیالیت نانوذرات و تصحیحات مربوط به آن کرد.
سیستمهای خنک کننده، یکی از مهمترین دغدغههای کارخانهها و صنایعی مانند میکروالکترونیک و هر جایی است که به نوعی با انتقال گرما روبهرو باشد. با پیشرفت فناوری در صنایعی مانند میکروالکترونیک که در مقیاسهای زیر صد نانومتر عملیاتهای سریع و حجیم با سرعتهای بسیار بالا (چند گیگا هرتز) اتفاق میافتد و استفاده از موتورهایی با توان و بار حرارتی بالا اهمیت به سزایی پیدا میکند، استفاده از سیستمهای خنککننده پیشرفته و بهینه، کاری اجتنابناپذیر است. بهینهسازی سیستمهای انتقال حرارت موجود، در اکثر مواقع به وسیله افزایش سطح آنها صورت میگیرد که همواره باعث افزایش حجم و اندازه این دستگاهها میشود؛ لذا برای غلبه بر این مشکل، به خنک کنندههای جدید و مؤثر نیاز است و نانو سیالات به عنوان راهکاری جدید در این زمینه مطرح شدهاند. نانوسیالات به علت افزایش قابل توجه خواص حرارتی، توجه بسیاری از دانشمندان را در سالهای اخیر به خود جلب کرده است، به عنوان مثال مقدار کمی (حدود یک درصد حجمی) از نانوذرات مس یا نانولولههای کربنی در اتیلن گلیکول یا روغن به ترتیب افزایش 40 و 150 درصدی در هدایت حرارتی این سیالات ایجاد میکند [2] [3]؛ در حالی که برای رسیدن به چنین افزایشی در سوسپانسیونهای معمولی، به غلظتهای بالاتر از ده درصد از ذرات احتیاج است؛ این در حالی است که مشکلات رئولوژیکی و پایداری این سوسپانسیونها در غلظتهای بالا مانع از استفاده گسترده از آنها در انتقال حرارت میشود. در برخی از تحقیقات، هدایت حرارتی نانوسیالات، چندین برابر بیشتر از پیشبینی تئوریها است. از دیگر نتایج بسیار جالب، تابعیت شدید هدایت حرارتی نانوسیالات از دما [4] [5] و افزایش تقریباً سه برابری فلاکس حرارتی بحرانی آنها در مقایسه با سیالات معمولی است [6 و7 [
این تغییرات در خواص حرارتی نانوسیالات فقط مورد توجه دانشگاهیان نبوده در صورت تهیه موفقیتآمیز و تأیید پایداری آنها، میتواند آیندهای امیدوارکننده در مدیریت حرارتی صنعت را رقم بزند. البته از سوسپانسیون نانوذرات فلزی، در دیگر زمینهها از جمله صنایع دارویی و درمان سرطان نیز استفاده شده است [8]. به هر حال تحقیق در زمینه نانوذرات، دارای آیندهای بسیار گسترده است .
• شکل 1. تصاویر TEM از نانو سیال مس (چپ)، نانو ذرات اکسید مس (وسط) و ذرات کلوئیدی طلاسرب (راست) که در مطالعات مقاومت فصل مشترک استفاده شده اند. ذرات اکسید مس حالت خوشه ای دارند و کلوئید های طلاسرب توزیع مناسب و اندازه یکسان دارند.
2 . تهیه نانوسیالات
بهبود خواص حرارتی نانوسیال احتیاج به انتخاب روش تهیه مناسب این سوسپانسیونها دارد تا از تهنشینی و ناپایداری آنها جلوگیری شود. متناسب با کاربرد، انواع بسیاری از نانوسیالات از جلمه نانوسیال اکسید فلزات، نیتریتها، کاربید فلزات و غیرفلزات که به وسیله یا بدون استفاده از سورفکتانت در سیالاتی مانند آب، اتیلن گلیگول و روغن به وجود آمده است. مطالعات زیادی روی چگونگی تهیه نانوذرات و روشهای پراکندهسازی آنها درسیال پایه انجام شده است که در اینجا به طور مختصر چند روش متداول را که برای تهیه نانوسیال وجود دارد ذکر میکنیم. یکی از روشهای متداول تهیه نانوسیال، روش دو مرحلهای است [10]. در این روش ابتدا نانوذره یا نانولوله معمولاً به وسیله روش رسوب بخار شیمیایی (CVD) در فضای گاز بیاثر به صورت پودرهای خشک تهیه میشود [11] [ شکل 1. وسط]، در مرحله بعد نانوذره یا نانولوله در داخل سیال پراکنده میشود. برای این کار از روشهایی مانند لرزانندههای مافوق صوت و یا از سورفکتانتها استفاده میشود تا تودههای نانوذرهای به حداقل رسیده و باعث بهبود رفتار پراکندگی شود. روش دو مرحلهای برای بعضی موارد مانند اکسید فلزات در آب، دیونیزه شده بسیار مناسب است [10] و برای نانوسیالات شامل نانوذرات فلزی سنگینی، کمتر موفق بوده است
روش دو مرحلهای دارای مزایای اقتصادی بالقوهای است؛ زیرا شرکتهای زیادی توانایی تهیه نانوپودرها در مقیاس صنعتی را دارند
روش یک مرحلهای نیز به موازات روش دو مرحلهای پیشرفت کرده است؛ به طور مثال نانوسیالاتی شامل نانوذرات فلزی با استفاده از روش تبخیر مستقیم تهیه شدهاند [2] و [12]. در این روش، منبع فلزی تحت شرایط خلاء تبخیر میشود [14] [شکل 1. چپ[
در این روش، تراکم توده نانوذرات به حداقل خود میرسد، اما فشار بخار پایین سیال یکی از معایب این فرایند محسوب میشود؛ ولی با این حال روشهای شیمیایی تک مرحلهای مختلفی برای تهیه نانوسیال به وجود آمده است که از آن جمله میتوان به روش احیای نمک فلزات و تهیه سوسپانسیون آن در حلالهای مختلف برای تهیه نانوسیال فلزات اشاره کرد [16] [شکل 1. راست]. مزیت اصلی روش یک مرحلهای، کنترل بسیار مناسب روی اندازه و توزیع اندازه ذرات است.
• شکل 2. ارتباط هدایت الکتریکی با جزء حجمی نانو ذرات، بر اساس تئوری میانگین متوسط برای نانو ذرات بسیار هادی (خط چین پایین) و مدل کلوخه های متراکم
3 . انتقال حرارت در سیالات ساکن
خواص استثنایی نانوسیالات شامل هدایت حرارتی بیشتر نسبت به سوسپانسیونهای معمولی، رابطه غیرخطی بین هدایت وغلظت مواد جامد و بستگی شدید هدایت به دما و افزایش شدید فلاکس حرارتی در منطقه جوشش است. این خواص استثنایی، به همراه پایداری، روش تهیه نسبتاً آسان و ویسکوزیته قابل قبول باعث شده تا این سیالات به عنوان یکی از مناسبترین و قویترین انتخابها در زمینه سیالات خنک کننده مطرح شوند. نتایج یکی از تحقیقات منتشر شده در زمینه تغییر هدایت حرارتی نانوسیال به عنوان تابعی از غلظت در شکل (2) آمده است.
بیشترین تحقیقات روی هدایت حرارتی نانوسیالات، در زمینه سیالات حاوی نانوذرات اکسید فلزی انجام شده است .
ماسودا افزایش 30 درصدی هدایت حرارتی را با اضافه کردن 3/4 درصد حجمی آلومینا به آب گزارش کرده است. لی [15] افزایش 15 درصدی را برای همین نوع نانوسیال با همین درصد حجمی گزارش کرده است که تفاوت این نتایج را ناشی از تفاوت در اندازه نانوذرات بهکار رفته در این دو تحقیق میداند. قطر متوسط ذرات آلومینای بکاررفته در آزمایش اول 13نانومتر و در آزمایش دوم 33 نانومتر بوده است. زای و همکاران [20] [19] افزایش 20 درصدی را برای 50 درصد حجمی از همین نانوذرات گزارش کردهاند. گروه مشابهی [21] برای نانوذرات کاربید سیلیکون نیز به نتایج مشابهی رسیدند. لی بهبود نسبتاً کمتری را در هدایت حرارتی نانوسیالات حاوی نانوذرات اکسید مس، نسبت به نانوذرات آلومنیا مشاهده کرد؛ در حالی که ونگ [24] 17 درصد افزایش هدایت حرارتی را برای فقط 4/0 درصد حجمی از نانوذرات اکسید مس در آب گزارش کرده است. برای نانوسیال با پایه اتیلن گلیکول، افزایش بالای 40 درصد برای 3/0 درصد حجمی مس با متوسط قطر ده نانومتر گزارش شده است. پتل [5] افزایش بالای 21 درصد برای سوسپانسیون 11 درصد حجمی از نانوذرات طلا و نقره که به ترتیب در آب و تولوئن پراکنده شده بودند را مشاهده کرد. در مواردی هم هیچ افزایش قابل توجهی در هدایت مشاهده نشده است
[23].
اخیراً تحقیقات دیگری روی وابستگی هدایت به دما برای غلظتهای بالای نانوذرات اکسید فلزات و غلظتهای پایین نانوذرات فلزی در حال انجام است که در هر دو مورد در محدوده دمای 20 تا 50 درجه سانتیگراد افزایش دو تا چهار برابری در هدایت مشاهده شده است و در صورت تأیید این خواص برای دماهای بالاتر میتوان نانوسیال را در سیستمهای گرمایشی نیز استفاده کرد.
بیشترین افزایش هدایت در سوسپانسیون نانولولههای کربنی گزارش شده است که علاوه بر هدایت حرارتی بالا، نسبت طول به قطر بالایی دارند[شکل 3]. از آنجا که نانولولههای کربنی، تشکیل یک شبکه فیبری میدهند، سوسپانسیون آنها بیشتر شبیه کامپوزیتهای پلیمری عمل میکند. بیرکاک[25] افزایش 125 درصدی هدایت را در اپوکسی پلیمر- نانولوله حاوی یک درصد نانولوله تک دیواره گزارش کرد، همچنین مشاهده کرد که با افزایش دما، هدایت حرارتی افزایش مییابد.
چوی[3] برای سوسپانسیون یک درصد نانولولههای چند دیواره در روغن [شکل 3 ب] 16 درصد افزایش هدایت حرارتی گزارش کرده است. گزارشها و تحقیقات مختلفی در زمینه افزایش هدایت حرارتی سوسپانسیون نانولولهکربنی ارائه شده است؛ زای [26] افزایش ده تا 20 درصدی هدایت حرارتی را در سوسپانسیون یک درصد حجمی با سیال آب گزارش کرده است. ون و دینگ [27] نیز 25درصد افزایش هدایت را در سوسپانسیون 8/0 درصد حجمی در آب گزارش کرده است. اسیل [23] بیشترین افزایش را 38 درصد برای سوسپانسیون شش درصد حجمی در آب گزارش کرده است.
ون و دینگ افزایش سریع هدایت در غلظتهای حدود 2/0 درصد حجمی را گزارش کرده و نشان داده است که این افزایش از آن به بعد تقریباً ثابت میماند. در تمامی گزارشها افزایش هدایت با دما مشاهده شده؛ هر چند برای دماهای بالاتر از 30 درجه سانتیگراد این افزایش تقریباً متوقف میشود.
• شکل 3. تصاویر SEM از نانو لوله های کربنی تک دیواره (a) و چند دیواره (b) مورد استفاده در سوسپانسیون ها و کامپوزیت ها.
4 . جریان، جابهجایی و جوشش
اخیراً ضرایب انتقال حرارت نانوسیال در جابهجایی آزاد و اجباری اندازهگیری شده است. داس [17] آزمایشهای تعیین خواص حرارتی جوشش را برای نانوسیال شروع کرد. یو [6] فلاکس حرارتی بحرانی نانوسیال آلومینا- آب در حال جوشش را اندازهگیری کرد و افزایش سه برابری در فلاکس حرارت بحرانی (CHF) را نسبت به آب خالص گزارش کرد. در همین زمینه واسالو [7] نانوسیال سیلیکا- آب را تهیه کرد و همان افزایش سه برابری در CHF را گزارش کرد. ضریب انتقال حرارت جابجایی آزاد علاوه بر اینکه به هدایت حرارتی بستگی دارد، به خواص دیگری مانند گرمای ویژه، دانسیته و ویسکوزیته دینامیک نیز وابسته است که البته در این درصدهای حجمی پایین همانطور که انتظار میرفت و مشاهده شد، گرمای ویژه و دانسیته بسیار به سیال پایه نزدیک است [33]. ونگ [34] ویسکوزیته آلومینا- آب را اندازه گرفت و نشان داد که هر چه ذرات بهتر و بیشتر پراکنده شوند ویسکوزیته پایینتری را مشاهده میکنیم. وی افزایش 30 درصدی در ویسکوزیته را برای سوسپانسیون سه درصد حجمی گزارش کرد که در مقایسه با نتیجه پکرچو [35] سه برابر بیشتر به نظر میرسد که نشاندهنده وابستگی ویکسوزیته به روش تهیه نانوسیال است. ژوانولی [32] ضریب اصطکاک را برای نانوسیال حاوی یک تا دو درصد ذرات مس به دست آورد و نشان دادکه این ضریب تقریباً مشابه سیال پایه آب است. ایستمن [36] نشان داد که ضریب انتقال حرارت جابهجایی اجباری سوسپانسیون 9/0 درصد حجمی از نانوذرات اکسید مس، 15 درصد بیشتر از سیال پایه است.
• شکل 4. پیش بینی هدایت حرارتی کامپوزیت ها ( نرمال شده بر اساس هدایت ماتریکس) به عنوان تابعی از جزء حجمی پر کننده. مربع توپر: ذرات با توزیع مناسب، دایره: خوشه های ذرات متراکم ( با 60 درصد حجمی) و مربع: خوشه های با تراکم کمتر ( با 40 درصد حجمی از نانو ذرات(
ژوان ولی [32] ضریب انتقال حرارت جابهجایی اجباری در جریان آشفته را نیز اندازه گرفتند و نشان دادند که مقدار کمی از نانوذرات مس در آب دیونیزه شده، ضریب انتقال حرارت را به صورت قابل توجهی افزایش میدهد، به طور مثال افزودن دو درصد حجمی از نانوذرات مس به آب، حدود 39 درصد انتقال حرارت آن را افزایش میدهد. در حالی که در تناقض با نتایج بالا، پکوچو [35] کاهش 12درصدی ضریب انتقال حرارت را در سوسپانسیون حاوی سه درصد حجمی از آلومینا و تیتانا در همان شرایط مشاهده کردند. پوترا [28] با کار روی جابجائی آزاد، بر خلاف هدایت و جابهجایی اجباری، کاهش انتقال حرارت را مشاهده کرد. داس با [17] انجام آزمایشهای جوشش روی آلومینا- آب نشان داد که با افزایش درصد حجمی نانوذرات، بازدهی جوشش نسبت به سیال پایه کم میشود. وی این کاهش را به تغییر خواص سطحی بویلر به علت تهنشینی نانوذرات روی سطح ناهموار آن نسبت داد، نه به تغییر خواص سیال. یو [6] با اندازهگیری فلاکس حرارتی بحرانی برای جوشش روی سطوح تخت و مربعی مس که در نانوسیال آب- آلومینا غوطهور بودند، نشان داد که فلاکس حرارتی این سیالات سه برابر آب است و اندازه متوسط حباب، افزایش و فرکانس تولید آنها کاهش مییابد. این نتایج را واسالو [7] نیز تأیید کرد. وی روی نانوسیال آب - سیلیکا کار میکرد و افزایش فلاکس حرارت بحرانی را برای غلظتهای کمتر از یکهزارم درصد حجمی گزارش کرد. هنوز مدلی برای پیشبینی این افزایشها و فاکتورهای مؤثر بر آن وجود ندارد.
5 . هدایت حرارتی نانوسیال
هدایت حرارتی نانوسیال بیشترین مطالعات را به خود اختصاص داده است. این مقاله نیز به هدایت حرارتی در سیال ساکن پرداخته است. از آنجا که نانوسیال جزو مواد مرکب و کامپوزیتی محسوب میشود، هدایت حرارتی آن به وسیله تئوری متوسط مؤثر به دست میآید که به وسیله موسوتی، کلازیوس، ماکسول و لورانزا در قرن 19 به دست آمد [37 و38]. اگر از تأثیرات سطح مشترک نانوذرات کروی صرفنظر شود، در مقادیر بسیار اندک نانوذرات [ f = جزء حجمی نانوذرات] همه مدلهای منتج از تئوری متوسط مؤثر، حل یکسانی دارند. در مواردی که نانوذرات دارای هدایت حرارتی بالایی باشد پیشبینی میشود که افزایش هدایت حرارتی نانوسیال3× f خواهد شد که این پیشبینی، تخمین خوبی برای مواردی است که هدایت ذرات، بیشتر از 20 برابر هدایت حرارتی سیال باشد [39]. همانطور که در شکل (2) نشان داده شده بسیاری از تحقیقات تطابق خوبی با این پیشبینی دارد، از جمله میتوان به تحقیقات زیر اشاره کرد: نانوسیال کاربید سیلیکون با اندازه 26 نانومتر و نانوسیال آلومینا- آب و آلومینا-اتیلن گلیکول [10].
مقاومت سطح مشترک نانوذرت و سیال اطراف آن پیشبینی این تئوری را کاهش میدهد؛ البته هر چه ذرات ریزتر باشند این مقاومت کاهش پیدا میکند. در غلظتهای بالای نانوذرات [شکل 1. وسط] اگر تودههای نانوذره کوچک باشد، تئوری متوسط مؤثر خوب جواب میدهد؛ زیرا توده نانوذرات فضای بیشتری نسبت به نانوذرات منفرد اشغال میکند و بنابراین جزء حجمی توده بیشتر از نانوذرات منفرد است. [40] در تودههای متراکم نانوذرات، دانسیته نسبی تقریباً 0 6 درصد است و در مواردی که تودهها از نظر وضعیت ساختمانی بازتر باشد، افزایش بیشتری را مشاهده میکنیم [ شکل 4] که نتایج آزمایشی نیز همین را نشان میدهد [20]؛ البته هدایت حرارتی نانوذرات تودهای، کوچکتر از ذرات منفرد است؛ البته عامل مهمی در مقابل هدایت حرارتی بالای نانوذرات نیست.
6 . چشمانداز
در ده سال گذشته، خواص جالبی برای نانوسیالات گزارش شده است که در این میان، هدایت حرارتی بیشترین توجه را به خود جلب کرده است؛ ولی اخیراً خواص حرارتی دیگری نیز مورد پژوهش قرار گرفته است. نانوسیالات را میتوان در زمینههای مختلفی به کاربرد، اما این کار با موانعی روبهرو است، از جمله اینکه درباره نانوسیال چند نکته باید بیشتر مورد توجه قرار گیرد:
• تطابق نداشتن نتایج تجربی در آزمایشگاههای مختلف؛• ضعف در تعیین مشخصات سوسپانسیون نانوذرات؛• نبود مدلها و تئوریهای مناسب برای بررسی تغییر خواص نانوسیال.
خواص استثنایی نانوسیالات شامل هدایت حرارتی بیشتر نسبت به سوسپانسیونهای معمولی، رابطه غیرخطی بین هدایت و غلظت مواد جامد و بستگی شدید هدایت به دما و افزایش شدید فلاکس حرارتی در منطقه جوشش است. خواص استثنایی، به همراه پایداری، روش تهیه نسبتاً آسان و ویسکوزیته قابل قبول باعث شده تا نانوسیالات به عنوان یکی از مناسبترین و قویترین انتخابها در زمینه سیالات خنک کننده مطرح شوند.مقدار کمی (حدود یک درصد حجمی) از نانوذرات مس یا نانولولههای کربنی در اتیلن گلیکول یا روغن به ترتیب افزایش 40 و 150 درصدی در هدایت حرارتی این سیالات ایجاد میکند
فصل سوم
1. محققان با نانو لولههای کربن نخستین مدارالکترونیک تک مولکولی را ساختند :
2. پژوهشگران ایرانی موفق به افزایش شار و انرژی مغناطیسی نانوآلیاژ مغناطیسی شدند:
3. پژوهشگران ایرانی موفق به افزایش شار و انرژی مغناطیسی نانوآلیاژ مغناطیسی شدند:
1. محققان با نانو لولههای کربن نخستین مدارالکترونیک تک مولکولی را ساختند :
دانشمندان شرکت "آی بیام" به تازگی موفق به ایجاد نخستین مدار الکترونیکی در حول یک مولکول نانو لوله کربن شدهاند که استفاده از این ماده در مقایسه با ماده سیلیکون که سالهاست در مدارهای الکترونیکی مورد استفاده قرار میگیرد، مزایای فراوانی دارد.
به گزارش سایت اینترنتی "نیوزفکتور"، کشف جدید که برای دست یافتن بدان از روشهای مرسوم تولید نیمه هادیها استفاده شده از آن جهت اهمیت دارد که در آن از تنها یک مولکول به عنوان اساس تمامی اجزای مدار الکترونیکی بهره گفته شده است. دانشمندان "آی بیام" عقیده دارند فن آوری جدید میتواند کاربردهای فراوانی در دنیای نیمه هادیها داشته باشد.
"جرج اپنزایلر" از محققان شرکت "آی بیام" در این تحقیقات اعلام کرد هرچند استفاده از سیلیکون برای تولید مدارهای الکترونیکی همچنان در مسیر پیشرفت حرکت میکند اما از هم اکنون باید به فکر استفاده از نانو لوله های کربنی به عنوان اجزای اصلی مدارها در دهههای آینده بود.
وی افزود: الکترونها درون نانو لولههای کربن بدون از دست دادن انرژی قابل توجهی حرکت میکنند و به عبارتی نانو لولههای کربنی در برابر عبور جریان الکتریسیته دارای مقاومت بسیار ناچیزی هستند و بنابراین می توانند جریان برق را بسیار سریعتر از مدارهای سیلیکونی فعلی قطع و وصل یا خاموش و روشن کرده و در نتیجه سرعت محاسبات در پردازندههای ریانهای را افزایش بدهند.
تا پیش از این دانشمندان تحقیقات خود را بر تولید ترانزیستور با استفاده از نانو لولههای کربن متمرکز کرده بودند اما هم اکنون پژوهشگران "آی بیام" نشان دادهاند که با استفاده از نانو لو لههای کربنی علاوه بر ترانزیستورها میتوان مدارهای کامل الکترونیکی ایجاد کرد و در واقع راه را برای ورود این فن آوری به صنعت تولید تراشه باز کرده اند.
نانو لولههای کربنی در حدود ? ???هزار بار نازکتر از یک تار موی انسان هستند اما با این وجود الکترونها از درون آنها بسیار راحتر از درون کابلهای ظریف مورد استفاده در مدارهای تراشههای فعلی عبور میکنند و با توجه به ابعاد کوچکتر نانو لولههای کربنی در مقایسه با کابلهای ظریف مورد استفاده در تراشه ها، میتوان با استفاده از آنها ابعاد پردازنده های رایانهای را بیش از پیش کاهش داده و کارایی ترانزیستورها و مدارهای الکترونیکی را افزایش داد...